Tuesday, 14 August 2007

energy policy lacking

Environmental groups and the renewables industry yesterday urged Gordon Brown to overhaul government energy policy if Britain is to have any hope of meeting its EU targets to combat climate change.
Green groups argue that Britain could achieve 20% by 2020 if it really wanted to. Adam Bruce, chairman of the British Wind Energy Association, said: "It is simply wrong for civil servants to now suggest that the 20% EU target cannot be met - the UK wind energy industry is confident that it can meet these new renewable objectives if the government takes the necessary measures to support it."

He said 40% of the EU's entire potential wind energy blows across Britain, but a lack of government action was preventing its proper exploitation.

Andrew Simms, head of the New Economics Foundation, said: "If renewable energy in Britain had enjoyed for decades the blank cheque that was written for the nuclear industry, today most of our electricity would be coming from a combination of wind, wave and solar power.

"If the DBERR continues to undermine progress toward the new, renewable energy economy it will potentially do even more damage than a leaky reactor."

The energy minister, Malcolm Wicks, told BBC radio that the government was on course to meet its own target of generating 15% of Britain's electricity from renewable sources by 2015. He acknowledged the EU target was more demanding.
full article

Four in five homes using energy-saving bulbs

The extent of the green revolution in Britain’s households will be revealed today with figures showing that more than 80 per cent of people believe they have a “duty” to recycle household waste.

The findings, to be published by the respected Office of National Statistics, also show a dramatic increase in the number of people who say they have at least one energy-saving light bulb in their homes.

The survey found that 81 per cent of people say they have at least one low-energy light bulb at home compared to just over 30 per cent a few years ago.
full article

Solar cells that can be printed

The development of a new solar cell may provide consumers a way to harness solar rays as a form of renewable energy, inexpensively.

Researchers at the New Jersey Institute of Technology (NJIT) have developed an inexpensive solar cell that can be painted or printed on flexible plastic sheets.

The new solar cells use a carbon nanotubes complex, which is a molecular configuration of carbon in a cylindrical shape. These nanotubes are about 50,000 times smaller than a human hair.
"The process is simple," said lead researcher and author Dr. Somenath Mitra, professor and acting chair of NJIT's department of chemistry and environmental sciences.

He foresees the day when consumers will even be able to print sheets of these solar cells with inexpensive home-based inkjet printers.

"Consumers can then slap the finished product on a wall, roof or billboard to create their own power stations," Mitra said.

How they work

While the new solar cells are very thin, just one nanotube can conduct current better than any conventional electrical wire, Mitra said.

"Actually, nanotubes are significantly better conductors than copper," he added. Mitra and his research team took the carbon nanotubes and combined them with tiny carbon "buckyballs" (carbon molecules in a hollow sphere configuration), to form snake-like structures, also called polymers.

Buckyballs are able to trap electrons, although they can't make electrons flow.

When the polymers are exposed to sunlight, and the buckyballs will grab the electrons.

The nanotubes, on the other hand, behave like copper wires, and so are able to make the electrons flow, Mitra explained.

"Using this unique combination in an organic solar cell recipe can enhance the efficiency of future painted-on solar cells," Mitra said.

"Someday, I hope to see this process become an inexpensive energy alternative for households around the world."

Renewable energy challenges

Harvesting energy directly from abundant solar radiation using solar cells is becoming increasingly for future global energy strategy, Mitra said.

But when it comes to harnessing renewable energy, challenges remain.

Expensive, large-scale infrastructure such as windmills (for wind power) or dams (for hydroelectric power) are necessary to drive renewable energy sources.

Even when solar power is being considered, there is the challenge of obtaining enough materials. Purified silicon, already in high demand for making computer chips, is a core material for fabricating conventional solar cells.

Moreover, the processing of purified silicon is beyond the capabilities of most consumers, Mitra notes.

"Developing organic solar cells from polymers, however, is a cheap and potentially simpler alternative," he said.

When contacted by In.Tech, Mitra claimed the process is commercially viable.

"We foresee a great deal of interest in our work because solar cells can be inexpensively printed or simply painted on exterior building walls and rooftops.

"Imagine some day driving in your hybrid car with a solar panel painted on the roof, which is producing electricity to drive the engine," Mitra said.

However, he concedes that the NJIT cells need improvement in the area of energy conversion efficiency, a measure of the power converted from absorbed light.

The NJIT cells currently run at only around 1% efficiency, compared to more than 25% efficiency for the best conventional solar cells.

"We should be able to improve (the cell efficiency) as we do more research, but the advantage is in the low capital investment required for this technology, which is significantly lower than for conventional solar cells."

Current silicon-based solar cells in use are relatively complex; they share many of the same processing and manufacturing techniques used for other semiconductor devices such as processors and memory chips.

Mitra's work was first published in the June edition of the Journal of Materials Chemistry.

full article

Sunday, 12 August 2007

What’s the future for eco tech? Come travel with us to 2012

Home energy monitoring
By 2017, every home in the country will be equipped with a ‘real-time’ electricity meter that tells you exactly how many pounds and carbon you’re burning in electricity right that second. It’s hard to say how many of these so-called smart meters will be in homes by 2012, but you can safely bet there’ll be a few: from May next year, all new meters will be of this ‘smart’ variety, which usually consist of a wireless transmitter by your fuse box and a wireless display that sits somewhere prominent like your kitchen or living room.

Judging from previous studies, you’ll save anywhere between 3 and 15 per cent on your electricity bill by virtue of having it in your face every day rather than on a piece of paper four times a year. The result? Lower carbon emissions: a good thing considering over a quarter of the UK’s CO2 comes from our homes. Gadgets that monitor your water and gas consumption are in the (ahem) pipeline too. [more news here]

Biodegradable plastics
If you’ve bought a bottle of Belu’s plastic water or own one specific Sony DVD player already, biodegradable plastics are in your home right now. Usually made from a corn starch, the idea behind the plastic - which you might also have encountered on your organic veg wrapping at Sainsbury’s - is that you can compost it instead of adding to the landfill that’s forecast to be full within a decade.

Fast forward five years and many everyday products could be made from the stuff. In Japan, NEC has a phone with a biodegradable case already, while over here the University of Warwick have a similar concept that Green Mobile one day hopes to make a reality. The amount of biodegradable plastic in our 2012 lives, however, really depends on how well the plastic ages - Belu’s bottles eventually leak holes if you leave them long enough - and how easy it is to compost the stuff.

Energy-saving white goods
No one likes talking about boilers, washing machines and fridge-freezers. They’re boring. But they do use lots of energy - your fridge-freezer’s on 24 hours a day,

365 days a year - which is why it’s so important to buy energy efficient ones. The big energy-saving developments have happened in the past decade, with the EU energy label getting left so far behind on refrigeration that there’s now an A++ rating. So today’s C-rated fridge-freezers are effectively E-rated ones in modern terms. Efficiency improvements by 2012 are likely to be fairly minimal - the big change will be A and A++ appliances becoming cheaper.

One exciting development on the boiler front is the prospect of combined heat and power (CHP) ones going on sale in the UK. Such boilers, like the Whispergen, generate electricity while buring natural gas, which the Energy Savings Trust reckons could cut your home’s CO2 emissions by 20 per cent. Powergen’s planning to sell the boilers in 2009.

Personal gadgets
You might think the notion of green gadgets an oxymoron. And, to an extent, you’d be right. The Energy Saving Trust reckons our consumer electronics - broadband boxes, set-top boxes, iPods, flat screens - will account for more than 12 per cent of our electricity bills by 2012. But all we need do is adapt to our gadgets: don’t upgrade your phone every eighteen months (if you’re on O2, you can already get calling credit instead of an upgrade); don’t get seduced by extra megapixels; do sell stuff on eBay, give it away on Freecycle, use rechargable batteries and get stuff recycled.

By 2012, our gadgets should be inherently greener. Solar chargers for gadgets are already on sale for less than £30 and Motorola’s just filed a patent for screens that double as solar panels, so it’s not too hard to envisage future portable gizmos that power themselves.

Micro renewables
Wind turbines and solar panels are the pin-ups of the eco tech world. They’re sexy, talked about, and everyone wants one. Well, David Cameron wants one, and so do we - one of our few things in common. But despite the enthusiasm for the technologies, price is still a major obstacle. A wind turbine will set you back £1,500 and provide about 10-20 per cent of your electricity needs if plonked in the right place, solar thermal around £3,000 for just over half your annual hot water needs and an £8,000 solar photovoltaic setup could generate roughly half your electricity needs.

Even with grants, those are big price tags, and they’re unlikely to drop rapidly by 2012. Most solar PV panels, for example, are made from silicon, which is expensive because of its scarcity and demand for making computers. The major change by 2012 should be planning permission - if Ruth Kelly’s proposals this year go ahead, putting a solar array or turbine on your roof will be as easy as getting a satellite dish installed. [more on turbines] [more on solar electricity] [more on solar water heating]

full article