Sunday, 29 July 2007

Magic Boiler Scheme

The Magic boiler scheme allows you to purchase high efficiency boilers and central heating controls at reduced prices.

By installing simple energy-efficiency measures into your home, you could reduce your fuel bills by up to £200 per year.

To help you make these savings the Magic boiler scheme provides special discounts with various boiler manufacturers and is managed through PTS - Plumbing Trade Supplies.

If you want to buy the boiler yourself, just mention the Magic Boiler Scheme at PTS, or let your plumber know about the scheme and they can gain access to the same discounts.

A £20 cash back is also available when a boiler is purchased at PTS, who will supply you with the necessary application form.

To find out more about the Magic Boiler Scheme
Magic Boiler Pricelist
PTS Plumbing

Rolf Disch has designed a new housewith a solar-collecting array on top that follows the Sun all day long, but the real feat of engineering comes from the structure itself. The entire house rotates on a central axle. The front of the house is composed of triple-glazed glass to point toward that glowing ball of gas in the sky during the winter, while a heavily insulated backside rotates around to keep the heat at bay during those warm summer months.
full article

Saturday, 28 July 2007

Missing carbon mystery: Case solved?

Despite rapid deforestation, Stephen's team also showed that tropical forests are the net source of a mere 100 million tonnes of carbon annually, contrary to previous estimates of 1.8 billion tonnes. This suggests that carbon sequestration in the tropics is substantial enough to almost counterbalance the effects of deforestation. Stephens says "tropical forests are essentially in balance, absorbing as much carbon dioxide as they give off". One reason tropical forests could be absorbing substantially more carbon dioxide than accounted for in the models is the phenomenon known as CO2 fertilization. Trees take in carbon dioxide to grow and when there is more of it they tend to grow faster, being fertilized by carbon dioxide. Also, as temperatures increase with climate change, soil organic matter decomposes more quickly, freeing up nutrients in the ground for forest growth.

Temperate and boreal forests are also being fertilized indirectly by nitrogen, largely from farming and fuel use, according to a study recently published a study in Nature, led by Federico Magnani from the University of Bologna. The study suggests that this is contributing to the carbon sink in northern latitudes, but Magnani says the same could not be true for tropical forests, where phosphorous and not nitrogen determines growth. He says that to understand what is happening in the tropics "we need to know how much of the carbon sink is the result of vegetation regrowth following deforestation, and how much of it comes from substantial carbon sequestration by primary forests". Manuel Gloor of the University of Leeds, UK, also argues that we need more information before any assertions on the whereabouts of the missing carbon sink can be confirmed. "To really settle the question regarding tropical versus northern hemisphere carbon sinks, a substantial amount of atmospheric concentration data over tropical land will be needed," he says.

Tropical forests are, however, rapidly disappearing. Forests in South America, Central Africa and South-East Asia are being cleared for cropland or cattle pasture, and reduced by the expansion of logging and changing patterns of cultivation. The latest IPCC report on mitigating climate change found that during 2004, the contribution of deforestation — primarily in the tropics — and the decay of biomass to global warming was 17.3% of total global greenhouse-gas emissions. "Cutting down tropical forests not only increases carbon emissions but it also removes a strong sink and its potential for offsetting future emissions," says Stephens.

Whether tropical or northern forests store more carbon might ultimately be academic, though, when it comes to mitigating climate change. Stephens believes that "relying on trees to mitigate climate change is not a good long-term strategy, because the carbon they store gets returned to the atmosphere on a timescale of around 30 years when they die and decompose. Afforestation and reforestation can provide short-term sinks to slow warming and possibly give us more time to find solutions, but ultimately we need to get the carbon into the ocean or geologic reservoirs, or not emit it in the first place".

full article

Poison plant could help to cure the planet


The jatropha bush seems an unlikely prize in the hunt for alternative energy, being an ugly, fast-growing and poisonous weed. Hitherto, its use to humanity has principally been as a remedy for constipation. Very soon, however, it may be powering your car.

Almost overnight, the unloved Jatropha curcushas become an agricultural and economic celebrity, with the discovery that it may be the ideal biofuel crop, an alternative to fossil fuels for a world dangerously dependent on oil supplies and deeply alarmed by the effects of global warming.

The hardy jatropha, resilient to pests and resistant to drought, produces seeds with up to 40 per cent oil content. When the seeds are crushed, the resulting jatropha oil can be burnt in a standard diesel car, while the residue can also be processed into biomass to power electricity plants.

As the search for alternative energy sources gathers pace and urgency, the jatropha has provoked something like a gold rush. Last week BP announced that it was investing almost £32 million in a jatropha joint venture with the British biofuels company D1 Oils.

Even Bob Geldof has stamped his cachet on jatropha, by becoming a special adviser to Helius Energy, a British company developing the use of jatropha as an alternative to fossil fuels. Lex Worrall, its chief executive, says: “Every hectare can produce 2.7 tonnes of oil and about 4 tonnes of biomass. Every 8,000 hectares of the plant can run a 1.5 megawatt station, enough to power 2,500 homes.”

Jatropha grows in tropical and subtropical climates. Whereas other feed-stocks for biofuel, such as palm oil, rape seed oil or corn for ethanol, require reasonable soils on which other crops might be grown, jatropha is a tough survivor prepared to put down roots almost anywhere.

Scientists say that it can grow in the poorest wasteland, generating topsoil and helping to stall erosion, but also absorbing carbon dioxide as it grows, thus making it carbon-neutral even when burnt. A jatropha bush can live for up to 50 years, producing oil in its second year of growth, and survive up to three years of consecutive drought.

In India about 11 million hectares have been identified as potential land on which to grow jatropha. The first jatropha-fuelled power station is expected to begin supplying electricity in Swaziland in three years. Meanwhile, companies from Europe and India have begun buying up land in Africa as potential jatropha plantations.

Jatropha plantations have been laid out on either side of the railway between Bombay and Delhi, and the train is said to run on more than 15 per cent biofuel. Backers say that the plant can produce four times more fuel per hectare than soya, and ten times more than corn. “Those who are working with jatropha,” Sanju Khan, a site manager for D1 Oils, told the BBC, “are working with the new generation crop, developing a crop from a wild plant — which is hugely exciting.”

Jatropha, a native of Central America, was brought to Europe by Portuguese explorers in the 16th century and has since spread worldwide, even though, until recently, it had few uses: malaria treatment, a windbreak for animals, live fencing and candle-mak-ing. An ingredient in folk remedies around the world, it earned the nickname “physic nut”, but its sap is a skin irritant, and ingesting three untreated seeds can kill a person.

Jatropha has also found a strong supporter in Sir Nicholas Stern, the government economist who emphasised the dangers of global warming in a report this year. He recently advised South Africa to “look for biofuel technologies that can be grown on marginal land, perhaps jatropha”.

However, some fear that in areas dependent on subsistence farming it could force out food crops, increasing the risk of famine.

Some countries are also cautious for other reasons: last year Western Australia banned the plant as invasive and highly toxic to people and animals.

Yet a combination of economic, climatic and political factors have made the search for a more effective biofuel a priority among energy companies. New regulations in Britain require that biofuels comprise 5 per cent of the transport fuel mix by 2010, and the EU has mandated that by 2020 all cars must run on 20 per cent biodiesel. Biodiesel reduces carbon dioxide emissions by nearly 80 per cent compared with petroleum diesel, according to the US Energy Department.

Under the deal between BP and D1, £80 million will be invested in jatropha over the next five years, with plantations in India, southern Africa and SouthEast Asia. There are no exact figures for the amount of land already under jatropha cultivation, but the area is expanding fast. China is planning an 80,000-acre plantation in Sichuan, and the BPD1 team hopes to have a million hectares under cultivation over the next four years.

Jatropha has long been prized for its medicinal qualities. Now it might just help to cure the planet.

- D1 Oils, the UK company leading the jatropha revolution, is growing 430,000 acres of the plant to feed its biodiesel operation on Teesside — 44,000 acres more than three months ago, after a huge planting programme in India. It has also planted two 1,235-acre trial sites this year in West Java, Indonesia. If successful, these will become a 25,000-acre plantation. Elloitt Mannis, the chief executive, says that the aim is to develop energy “from the earth to the engine”.

Jatropha: costs and benefits

- Jatropha needs at least 600mm (23in) of rain a year to thrive. However, it can survive three consecutive years of drought by dropping its leaves

- It is excellent at preventing soil erosion, and the leaves that it drops act as soil-enriching mulch

- The plant prefers alkaline soils

- The cost of 1,000 jatropha saplings (enough for one acre) in Pakistan is about £50, or 5p each

- The cost of 1kg of jatropha seeds in India is the equivalent of about 7p. Each jatropha seedling should be given an area two metres square.

- 20 per cent of seedlings planted will not survive

- Jatropha seedlings yield seeds in the first year after plantation

full article